Tag Archive for: EUREKA

Hungarian–Austrian EUREKA Central System Project Concludes with Final Event at BME

A four-year research and development project has come to a successful close at the Budapest University of Technology and Economics (BME). Led by BME’s Department of Automotive Technologies, the EUREKA Central System project showcased the next generation of automated vehicles and intelligent road infrastructures. The international consortium — comprising six Hungarian and six Austrian partners — developed cutting-edge technological solutions that open new horizons in testing and developing autonomous mobility systems.

Launched in September 2021, the project presented its final results in October 2025 at BME’s Stoczek Street building. The closing event was opened by Dr. Zsolt Szalay, Head of the Department of Automotive Technologies, followed by presentations from Dr. András Rövid (BME) and Dr. Arno Eichberger (TU Graz), who outlined the project’s main objectives and milestones.

The Next Generation of Smart Roads

At the heart of the project was the development of a centralized system supporting the testing and control of connected and automated vehicles. The system, created by BME’s research team, generates a real-time, high-precision digital twin from roadside sensor data, capable of mapping the movements of both vehicles and their environment.

One of the most striking achievements was the smart road segment built along the shared section of Hungary’s M1–M7 motorways. Based on its digital twin model, BME researchers also developed a mobile application that provides vehicles without onboard sensors with real-time traffic and environmental information — such as lane positioning, surrounding vehicle movements, and static object locations.

“The project’s key significance lies in creating the next generation of smart roads and demonstrating their potential in developing and testing connected and automated vehicles. We also validated our results through real-world demonstrations with our partners,” emphasized Dr. András Rövid, the project’s technical lead and researcher at BME Automated Drive.

Cloud-Based Vehicle Control and Mixed-Reality Testing

Together with experts from TU Wien, STARD, and Virtual Vehicle, the BME team developed cloud-based vehicle control and trajectory planning solutions that enable centralized driving control and teleoperation at speeds of up to 90 km/h.

Another innovation was the mixed-reality testing as a service concept, which allows virtual objects to be integrated into real-world test environments — with vehicles responding to them as if they were real. With the contribution of TU Graz, researchers also implemented real-time integration of actual traffic data into simulation environments, allowing for even more realistic testing conditions.

Extensive Industrial Collaboration

Hungarian project partners included Robert Bosch Kft., Magyar Közút Nonprofit Zrt., Budapest Közút Zrt., Magyar Telekom Nyrt., and Bimfra Kft.
On the Austrian side, participants included TU Graz, TU Wien, Joanneum Research, Tom Robotics, STARD, and Virtual Vehicle.

Magyar Közút was responsible for establishing the sensor infrastructure along the M1–M7 motorway section. Bosch defined the system requirements, validated the smart road using drone-based methods, and integrated advanced driver assistance functions into the central control system. Magyar Telekom coordinated the development of the 5G V2X communication infrastructure, while Budapest Közút and Bimfra conducted high-resolution mapping and 3D modeling tasks.

Collaboration for the Future of Autonomous Mobility

Participants unanimously emphasized that the project not only delivered technological innovations but also laid the groundwork for the future of road infrastructure and the integrated development model of connected autonomous mobility.

The EUREKA Central System project has demonstrated that international, industry–academia collaborations can deliver practical, working solutions to the challenges of intelligent transportation — opening a new chapter in the research and development of automated vehicles.

BME researchers pioneer cloud-based real-world vehicle control

With a successful demonstration as part of the EUREKA Central System project the development of a central system to support the testing and operation of automated vehicles has reached an important milestone. The demonstration, carried out between 8-10 November by the consortium leader Budapest University of Technology and Economics and consortium member Virtual Vehicle Research GmbH of Austria, was the first time that an external partner used the services of a central system to control the manoeuvres to be performed by the test vehicle via standard interfaces.

During the demonstration, the vehicle was driven along a route designed by the central system based on a digital twin model generated in real time and sent to the test vehicle. In another experiment, low-level control messages were sent directly to the vehicle from the cloud, i.e. the vehicle was driven by the central system. The maneuver was designed to avoid a physical pedestrian or virtual pedestrian. To the best of our knowledge this is the first published experiment in the world where a real vehicle has been controlled in real conditions on a real track via standard interfaces from a cloud-based central system.

Dr. András Rövid, head of the Autonomous Vehicles research group at BME’s Department of Automotive Technologies and the professional leader of the consortium, said after the demonstration, “I am very pleased and consider it a success that we were able to meet the set goals in the tests and demonstrate the operation of cloud-based vehicle control under real conditions.”

Sensors embedded in infrastructure offer a unique opportunity to produce a digital twin model of the environment, including both static and dynamic elements. In our case, the digital twin model is produced in a so-called central system, based on higher level data extracted from various infrastructure sensors, which can be used to implement a number of additional driving support or autonomous vehicle functions provided by the central system, as well as to test them in an automated way. One of these functions is e.g. autonomous obstacle avoidance, where the trajectory to avoid an obstacle is planned by the central system based on the available digital twin model and transmitted to the vehicle. The vehicle, relying on its own control mechanisms, follows this planned path, avoiding a collision. In the EUREKA Central System project, a demonstration of such a function, provided by the central system, was carried out at the ZalaZONE test track with the participation of Hungarian and Austrian experts. The Austrian Virtual Vehicle is a leading international R&D center for the automotive and railway industry, focusing on advanced virtualization of vehicle development.

Testing was carried out at speeds of 20-50 km/h, and the next step will be to test the system at higher speeds.

The development work will enable the automatic testing of advanced driver assistance systems in particular, as well as providing an efficient solution for the control of vehicles from the control center in logistics centers.

Project title: Central System, Testing and verification methods for driving functions and environmental perception systems; Project ID: 2020-1.2.3-EUREKA-2021-00001; Funding: National Research, Development and Innovation Fund

Our article on bme.hu