Hungarian Innovation Could Elevate Autonomous Vehicle Safety to a New Level
The Vehicle Safety Research Group at the Department of Automotive Technologies, Budapest University of Technology and Economics (BME), presented today its unique technological development that promises to raise the safety of automated mobility to a new level. The aim of the project is to enable vehicles to detect hazardous situations—such as an approaching vehicle at a blind intersection—even when conventional environmental sensors like cameras or radars fail to perceive them. The internationally distinctive technology will result in a vehicle-integrable system expected to be completed within two years.
The development was showcased during an on-site visit by the Professional Advisory Board of the National Laboratory of Autonomous Systems, organized at the initiative of the National Research, Development and Innovation Office (NKFIH). During the visit, BME researchers provided an overview of Hungary’s latest innovations in autonomous vehicle safety.
A key component of autonomous mobility is the vehicle’s radio communication with other vehicles and with roadside sensing systems. The core of BME’s innovation lies in a safety function capable of recognizing approaching hazards in time and alerting the driver or the automated system, even under weak signal conditions. This enables vehicles to maintain reliable operation even when communication quality degrades, significantly reducing potential risks.
“Our goal is to ensure that vehicles can respond safely to emerging hazards under all circumstances. Our system can optimize the safety of an autonomous vehicle even in extreme environmental conditions, when it temporarily loses reliable signals from its surroundings,” explains Dr. Árpád Török, Senior Research Fellow at the BME Department of Automotive Technologies and Head of the Vehicle Safety Research Group. “This advancement could represent a new level of safety for autonomous driving, potentially accelerating the widespread adoption of automated mobility while helping to strengthen public trust in the technology through positive real-world experience.”
Virtual testing against invisible hazards
The system developed by the research group can also serve as a testing environment, allowing radio communication–based vehicle functions to be tested simultaneously in real and virtual settings. The solution can simulate weak communication links, enabling the assessment of how a vehicle reacts in critical situations under realistic conditions. The results can then be used to develop new, more advanced safety concepts. The system provides an independent, technology-neutral testing environment for validating future vehicle communication systems. This innovation is pioneering even on an international scale, supporting research, development, and safety standardization alike.
Cybersecurity as a key priority
Not only external but also internal communication networks within vehicles directly affect the physical safety of road users. In increasingly networked vehicles, various control units—such as braking, steering, and powertrain controllers—constantly exchange data. If these internal communications are compromised by a cyberattack or system failure, vehicle controllability, stability, and responsiveness can be endangered. To prevent such risks, BME’s research team places strong emphasis on investigating and enhancing the cybersecurity of in-vehicle networks, communication protocols, and control systems.
“It is a strategic priority for us to develop cutting-edge cybersecurity methodologies for our automotive industry partners. Our research focuses on AI-assisted security development and intelligent testing approaches. These methods allow for early detection of potential vulnerabilities and the design of preventive protection strategies. We also provide cybersecurity testing services supporting vehicle homologation processes, and we contribute to the creation of national testing protocols—helping ensure that Hungary’s automotive industry can apply safe, up-to-date, and globally competitive solutions,” adds Árpád Török, Ph.D.

















